Catecholaminergic depletion within the prelimbic medial prefrontal cortex enhances latent inhibition
نویسندگان
چکیده
Latent inhibition (LI) refers to the reduction in conditioning to a stimulus that has received repeated non-reinforced pre-exposure. Investigations into the neural substrates of LI have focused on the nucleus accumbens (NAc) and its inputs from the hippocampal formation and adjacent cortical areas. Previous work has suggested that lesions to the medial prefrontal cortex (mPFC), another major source of input to the NAc, do not disrupt LI. However, a failure to observe disrupted LI does not preclude the possibility that a particular brain region is involved in the expression of LI. Moreover, the mPFC is a heterogeneous structure and there has been no investigation of a possible role of different regions within the mPFC in regulating LI under conditions that prevent LI in controls. Here, we tested whether 6-hydroxydopamine (6-OHDA)-induced lesions of dopamine (DA) terminals within the prelimbic (PL) and infralimbic (IL) mPFC would lead to the emergence of LI under conditions that do produce LI in controls (weak pre-exposure). LI was measured in a thirst motivated conditioned emotional response procedure with 10 pre-exposures to a noise conditioned stimulus (CS) and two conditioning trials. Sham-operated and IL-lesioned animals did not show LI and conditioned to the pre-exposed CS at comparable levels to the non-pre-exposed controls. 6-OHDA lesions to the PL, however, produced potentiation of LI. These results provide the first demonstration that the PL mPFC is a component of the neural circuitry underpinning LI.
منابع مشابه
Atecholaminergic Depletion within the Prelimbic Medial Refrontal Cortex Enhances Latent Inhibition
(2010) Catecholaminergic depletion within the prelimbic medial prefrontal cortex enhances latent inhibition. Neuroscience, 170 (1). pp. The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions. This article is made available under the Creative Commons Attribution licence and may be reused according to the ...
متن کاملBehavioral Neuroscience The Effect of Catecholaminergic Depletion Within the Prelimbic and Infralimbic Medial Prefrontal Cortex on Recognition Memory for Recency, Location, and Objects
متن کامل
The Effect of Catecholaminergic Depletion Within the Prelimbic and Infralimbic Medial Prefrontal Cortex on Recognition Memory for Recency, Location, and Objects
There is good evidence that the medial prefrontal cortex (mPFC) is involved in different aspects of recognition memory. However, the mPFC is a heterogeneous structure, and the contribution of the prelimbic (PL) and infralimbic (IL) cortices to recognition memory has not been investigated. Similarly, the role of different neuromodulators within the mPFC in these processes is poorly understood. T...
متن کاملprelimbic of medial prefrontal cortex GABA modulation through testosterone on spatial learning and memory
Prefrontal cortex (PFC) is involved in multiple functions including attentional , spatial orientation, short and long-term memory. Our previous study indicated that microinjection of testosterone in CA1 impaired spatial learning and memory. Some evidence suggests that impairment effect of testosterone is mediated by GABAergic system. In the present study, we investigated the interaction of test...
متن کاملThe Study of Apomorphine Effects and Heterogeneity in the Medial Prefrontal Cortex on the Dopaminergic Behaviors of Rats
Objective(s) While the nucleus accumbens and the striatum have received much attention regarding their roles in stereotyped behaviors, the role of the medial prefrontal cortex (mPFC) has not been investigated to the same degree. Few studies have reported the role of the mPFC in dopaminergic induction of locomotor hyperactivity. The mPFC is a heterogeneous area (the anterior cingulated, prelimbi...
متن کامل